报告题目:Parity patterns and new Seidel-like triangles for median Genocchi numbers
报告人:傅士硕
报告时间:2025年4月21号(周一)上午10:30-11:30
主办:天津师范大学数学科学学院
报告地点:博理楼B103
报告摘要:
Hetyei introduced in 2019 the homogenized Linial arrangement and showed that its regions are counted by the median Genocchi numbers. In the course of devising a different proof of Hetyei's result, Lazar and Wachs considered another hyperplane arrangement that is associated with certain bipartite graph called Ferrers graph. In this talk, we explain how to label the regions of the aforementioned arrangement with permutations whose ascents are subject to a parity restriction. This labeling not only shows the equivalence between the two enumerative results due to Hetyei and Lazar-Wachs repectively, but also enables us to analyze a Seidel-like triangle that generates Genocchi numbers of both kinds. The talk is based on preliminary results in a joint work with Qi Fang, Haijun Li, and Quan Yuan.
报告人简介:
傅士硕,重庆大学研究员,博士生导师。2011年博士毕业于宾夕法尼亚州立大学,2011 - 2012在韩国科学技术院(KAIST)从事博士后研究,曾于2015年访问韩国国立数学研究所(NIMS),2016年访问法国里昂第一大学,2024年访问奥地利维也纳大学等。近期研究兴趣主要为组合数学中的整数分拆理论、排列统计量同分布问题、组合序列的伽马非负性,以及超平面配置的区域计数等。已在J. Combin. Theory Ser. A, Adv. Appl. Math., SIAM Disc. Math., European J. Combin., Proc. Roy. Soc. Edinburgh Sect. A 等期刊发表多篇论文,主持过国家自然科学基金两项。现任中国数学会组合数学与图论专业委员会理事、中国工业与应用数学学会图论组合及应用专业委员会副秘书长、中国运筹学会图论组合学分会理事、重庆市运筹学会常务理事。
欢迎广大师生参加!