报告题目:Projective spectrum, self-similarity group representation and complex dynamics
报告人:杨容伟 教授
Dept. of Mathematics and Statistics, SUNY at Alban
报告摘要:Complex dynamics concerns with iterations of complex maps, and the issue of convergence is often described by fascinating fractals related to the Julia set and the Mandelbrot set. In the late 1990s, Grigorchuk and his collaborators discovered self-similar group representations. This type of representation can be naturally lifted to a representation on a bigger Hilbert space. And in 2009 the notion of projective spectrum for several linear operators $A_1, ..., A_n$ was defined through the multiparameter pencil $A(z)=z_1A_1+\cdots +z_nA_n, z\in {\mathbb C}^n$. How can these three vastly different subjects be related? This talk will reveal a hidden and yet natural link through linear algebra.
报告人简介:杨容伟,教授,博士生导师,1998年博士毕业于美国纽约州立大学(石溪分校)基础数学系,现为美国纽约州立大学(阿尔巴尼分校)的一名数学系教授。杨容伟教授在泛函分析分支的多变量算子理论方面有很深的造诣,取得了许多重要的学术成果,现已完成了50余篇SCI论文的发表工作,主持并参与完成了两项美国国家自然科学基金项目,并多次在国际学术会议上做过重要报告。
报告时间:2020年12月18 日星期五,9:00-10:00
主办:天津师范大学数学科学学院
报告地点:腾讯会议 ( ID:845 786 646 ) 【线下】天津师范大学博理楼B103会议室